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Abstract

Predicting masked from visible parts of an im-
age is a powerful self-supervised approach for
visual representation learning. However, the com-
mon practice of masking random patches of pix-
els exhibits certain failure modes, which can pre-
vent learning meaningful high-level features, as
required for downstream tasks. We propose an
alternative masking strategy that operates on a
suitable transformation of the data rather than on
the raw pixels. Specifically, we perform princi-
pal component analysis and then randomly mask
a subset of components, which accounts for a
fixed ratio of the data variance. The learning task
then amounts to reconstructing the masked com-
ponents from the visible ones. Compared to local
patches of pixels, the principal components of
images carry more global information. We thus
posit that predicting masked from visible compo-
nents involves more high-level features, allowing
our masking strategy to extract more useful repre-
sentations. This is corroborated by our empirical
findings which demonstrate improved image clas-
sification performance for component over pixel
masking. Our method thus constitutes a simple
and robust data-driven alternative to traditional
masked image modeling approaches†.

1. Introduction
In masked image modeling (MIM; Pathak et al., 2016), parts
of an image are masked, and a model has to reconstruct the
missing parts from the visible ones—analogous to predict-
ing hidden words in masked language modeling (Devlin,
2019). To succeed at this task, it is thought that the model
must learn a meaningful representation of the visual con-
tent (Kong et al., 2023). Empirically, this approach indeed
produces representations that perform well when fine-tuned
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Figure 1. From Pixels to Components. Masked image modeling
involves reconstructing masked-out patches of pixels from visible
ones. Instead of masking in pixel space (top), we propose applying
random masks to a transformed version of the image, specifically
to its principal component representation (bottom). Two disjoint
sets of components are used as input and reconstruction target.

on downstream tasks, such as image classification and se-
mantic segmentation (Zhou et al., 2021; Bao et al., 2022;
Xie et al., 2022; Baevski et al., 2022; Dong et al., 2023).

MIM has been particularly effective when combined with
vision transformers (ViT; Dosovitskiy et al., 2021). A promi-
nent example is the masked autoencoder (MAE; He et al.,
2021), consisting of a ViT encoder-decoder architecture
and a masking strategy that randomly selects a fixed ratio
of square image patches, see Figure 1 (top). The encoder
processes the visible patches and the decoder aims to recon-
struct the masked content from the inferred representation.

While the inner workings of MAEs remain poorly under-
stood (Zhang et al., 2022; Yue et al., 2023), Kong et al.
(2023) suggested an explanation from a latent variable
model perspective. By splitting an image into two sepa-
rate views and asking the model to predict one from the
other, MAEs are compelled to pick up any information that
is shared across views. If the partition into views (i.e., the
masking strategy) is chosen carefully, this shared informa-
tion will include high-level latent variables, such as object
class. Since solving common downstream tasks with a sim-
ple (e.g., linear) predictor precisely requires identifying such
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Figure 2. Overview of the Principal Masked Autoencoder. A principal masked autoencoder (PMAE) differs from a vanilla MAE (He
et al., 2021) by performing the masking in the space of principal components xPC = PCA(x) rather than in pixel space. The visible
principal components m ⊙ xPC are then projected back into the observation space and serve as the input for a ViT encoder-decoder
architecture. Masked principal components, (1−m)⊙ xPC, serve as the reconstruction target.

high-level features, this offers a possible explanation for the
observed effectiveness of MAE representations.

With this in mind, we ask: Is masking random patches in
pixel space the optimal strategy for MIM? In natural lan-
guage, each word in a sentence tends to carry semantic infor-
mation, and the information shared between sets of words
often conveys the general message of the sentence. However,
this does not necessarily apply to the visual domain, where
individual pixels or entire patches commonly contain re-
dundant information (e.g., background). Moreover, (small)
objects can be masked out completely such that any informa-
tion about them is lost and reconstruction becomes impossi-
ble, see Figure 3 (right). Some works have thus sought to de-
vise more elaborate masking strategies which leverage aux-
iliary information such as learned or given image segmen-
tations (Li et al., 2021; Kakogeorgiou et al., 2022; Shi et al.,
2022). Without such prior knowledge or complex training
pipelines to identify the structure of an image, randomly
masking a fixed ratio of patches of pixels remains the default
practice. Yet, relying on this masking strategy assumes—
rather unrealistically—that the information shared between
any random partition of pixel patches naturally aligns with
high-level variables of interest (Kong et al., 2023).

In this work, we introduce an alternative data-driven mask-
ing strategy for MIM. Rather than working directly in pixel
space, we propose to first project images into a latent space
and then perform random masking on the transformed data.
Among the infinitely many candidate transformations, we
opt for simplicity and choose principal component analysis
(PCA), a well-established linear pre-processing technique
that is deterministic and (hyper)parameter-free. Following
the PCA transformation, some principal components are
masked-out and need to be reconstructed from the remaining
visible components, see Figure 1 (bottom) for an example.
Further, we leverage the fact that each principal component
captures a known fraction of the data variance to inform our

masking strategy. Specifically, we mask a random subset
of principal components that accounts for a fixed ratio
of the variance (Figure 4). The ratio of masked variance
serves as a proxy for the complexity of the modeling task
making it a more interpretable and more easily tunable
hyperparameter than the ratio of masked patches (Figure 5,
left). We combine this masking strategy with the MAE
architecture and refer to the resulting method as principal
masked autoencoder (PMAE), see Figure 2 for an overview.

Relying on a transformation like PCA allows for partition-
ing the information in an image into a set of global features
rather than into local patches of pixels, see Figure 1 . This
can help overcome the aforementioned failure modes of
spatial masking where the input and target share too much
(redundancy) or too little (impossibility) information. The
space of principal components may, therefore, constitute
a more meaningful domain for masking, resulting in more
useful high-level representations.

This is consistent with recent work, highlighting the benefi-
cial partitioning of image information by PCA. Balestriero &
LeCun (2024) demonstrate that low-eigenvalue components
capture features crucial for common downstream tasks (see
also Figure 7), and Chen et al. (2024b) highlight the impor-
tance of the space in which image distortions are applied,
referring to PCA as a valuable transformation to consider.
To the best of our knowledge, our work is the first to lever-
age such insights to devise a simple, robust, and effective
data-driven alternative to pixel-space masking in MIM.

In experiments on the CIFAR10, TinyImageNet and three
medical MedMNIST datasets, we observe our approach
(PMAE) to yield superior performance to the default strat-
egy of spatial masking (MAE), while being less sensitive
to the choice of masking ratio hyperparameter. These em-
pirical findings support our claim that masking principal
components instead of pixel patches can facilitate the learn-
ing of more meaningful high-level representations.
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Figure 3. Masking in pixel space. Image (left) with a random
spatial mask partially removing relevant information (middle) and
removing all semantic information (right). The latter is an example
in which MIM would likely fail to learn useful representations.

2. Background
Principal Component Analysis.

Principal component analysis (PCA; Pearson, 1901;
Hotelling, 1933) identifies components in data that ex-
hibit the highest variance. Given a centered data ma-
trix X ∈ RN×D with N observations of dimension D, PCA
seeks weight vectors vl ∈ RD for l = 1, . . . , L ≤ D (the
principal components or PCs) that maximize the variance
of the projections Xvl, subject to orthogonality with previ-
ously found PCs and unit-length constraints. The solution to
this problem is given by the eigenvalue decomposition of the
empirical covariance matrix Σ = X⊤X, i.e., Σ = VΛV⊤,
where Λ = diag(λ1, . . . , λD) contains the eigenvalues
λ1 > . . . > λD, and V ∈ RD×D contains the correspond-
ing eigenvectors. The first L PCs correspond to the eigen-
vectors of Σ with the largest eigenvalues, capturing the dom-
inant modes of variation in the data, with the variance ex-
plained by each PC proportional to its eigenvalue λl. While
PCA is often used with L < D for dimensionality reduction,
we focus on the lossless case where L = D. The projec-
tion of X onto its principal components (“into PC space”)
is given by XPC = XV, and the inverse transformation by
X = XPCV

⊤. By construction, PCA produces features
which are uncorrelated (X⊤

PCXPC = Λ). However, we em-
phasize that—except for special cases such as when the data
is multivariate Gaussian—this does not imply independence.
In general, the values of a subset of PCs are therefore (non-
linearly) predictive of the values of other PCs. Our results
in Section 5 and examples of reconstructions of masked prin-
cipal components in Appendix A.2.1 demonstrate that this
is the case for the natural and medical images we consider.

Representation Learning. Representation learning (Ben-
gio et al., 2013) aims at learning an embedding function
or encoder f : x 7→ z, which maps observations x ∈ RD to
representations z ∈ RK . These representations are meant
to capture some of the explanatory factors underlying the
data, thus making them well-suited for use in downstream
tasks such as predicting a target variable y (e.g., the class
or location of objects), often thought of as simple functions
of the high-level explanatory factors.

Masked Image Modeling. Prominent approaches to repre-
sentation learning in the image domain rely on the masked
image modeling paradigm (Pathak et al., 2016; Zhou et al.,
2021; He et al., 2021; Bao et al., 2022). Here we focus on
the widely adopted MAE (He et al., 2021) as a representative
of MIM. A MAE consists of: an encoder fϕ, parametrized
by ϕ, which maps the visible portions of the input together
with their positional embeddings to a representation; and
a decoder gθ, parametrized by θ, which reconstructs the
missing parts from their positional embeddings and the rep-
resentation produced by the encoder.

Given an observation x ∈ RD and complementary binary
masks m, (1−m) ∈ {0, 1}D, which extract the visible and
masked parts, respectively, the MAE objective is given by

LMAE(x,m;θ,ϕ) =∥∥∥(1−m)⊙
[
gθ ◦ fϕ (m⊙ x)− x

]∥∥∥2
2
,

(2.1)

where ⊙ denotes element-wise multiplication and ◦ denotes
function composition. The parameters (ϕ,θ) are optimized
via stochastic gradient descent on Equation (2.1).

The mask m partitions the D pixels into two disjoint sets
of (1− r)D visible and rD masked out pixels, where r is
referred to as the masking ratio. Typically, m is chosen by
partitioning the image into square patches (thus introducing
patch size as an additional hyperparameter) and then
randomly selecting a ratio of r patches to be masked.

Prior work has relied on hyperparameter sweeps to identify
the masking ratio and patch size that optimize downstream
performance (He et al., 2021; Zhang et al., 2022). These
efforts have led to the widely adopted approach of masking
out 75% (r = 0.75) of patches of size 16× 16 pixels.

Challenges Resulting from Spatial Masking. Even though
MIM with random spatial masking produces strong results
on representation learning benchmarks (Dong et al., 2023),
it is based on the rather unrealistic assumption that, given
any partition of image patches into two disjoint sets, the
information shared between views contains variables that
are linearly predictive of downstream targets y (Kong et al.,
2023). As visualized in Figure 3, for some masks (such as
the one in the middle) shared information indeed includes
features such as object type. However, for other masks (such
as the one on the right) predicting the correct class label
from the visible patches is almost impossible. The latter
therefore yields input-target pairs which do not contribute
a useful self-supervised learning signal. Moreover, even for
well-designed masks, many masked-out and visible patches
contain redundant information such as background. This
leads us to conjecture that spatial masking is a suboptimal
approach to MIM that is not always well-aligned with
common downstream tasks and may suffer from slow
convergence and high sensitivity to hyperparameters, as
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Figure 4. Mask Design in PMAE. 1. Perform PCA 2. For each batch, randomly shuffle the principal components and select a subset to
construct the input (light blue), while the remaining components are used to create the reconstruction target (dark blue). In PMAEocl,
the input components are chosen to explain 100×(1−r)% of the data’s variance with r optimized for downstream performance (here
Ropt =0.15). In PMAErd, the input explains between 10% and 90% of the variance with r sampled independently and uniformly in
[0.1, 0.9] for each batch.

suggested by prior work (He et al., 2021; Balestriero &
LeCun, 2024) and confirmed in Figure 5.

3. Principal Masked Autoencoders
To address the challenges arising from spatial masking, we
propose an alternative masking strategy and a correspond-
ing MAE-variant which we refer to as principal masked
autoencoder (PMAE). PMAE builds on the MIM learning
paradigm but differs from prior approaches by performing
the masking operation on a latent space. Specifically, we
first apply an invertible transformation t : RD → RD to an
image x and then mask and reconstruct at the level of t(x),
resulting in the following objective:

LPMAE (x,m;θ,ϕ) =∥∥∥(1−m)⊙
[
t ◦ gθ ◦ fϕ ◦ t−1 (m⊙ t (x))− t(x)

]∥∥∥2
2
.

Similar to Equation (2.1), fϕ is an embedding function
which encodes visible parts of the image and gθ is a
decoder which reconstructs the missing parts. Note
that Equation (2.1) is recovered as a special case of
Equation (3.1) if t is chosen to be the identity mapping.

Design Choices. While Equation (3.1) can generally ac-
commodate any invertible mapping t, this work specifically
explores the use of PCA as a data transformation, i.e., we
choose t(x) = xPC = xV. Figure 2 provides a visual sum-
mary of PMAE based on PCA. We leave an investigation
of alternative image transformations (e.g., the Fourier trans-
form) for future work, see Section 8 for further discussion.

Following MAEs, we use ViTs (Dosovitskiy et al., 2021) for
both fϕ and gθ . Since these architectures are optimized for
processing images, we project the visible components back
into image space using the inverse PCA transformation t−1

before encoding. Similarly, to reconstruct the missing com-
ponents, the decoder output is projected back into PC space

using t. ViTs are a common choice of architecture for MIM
due to the use of binary masks in pixel space. These masks
produce images with black-patch occlusions (see Figure 3),
which are poorly aligned with the inductive biases of other
architectures. By masking principal components instead of
patches of pixels, the encoder inputs and reconstruction tar-
gets in PMAEs display smoother activation patterns (see Fig-
ure 1, bottom). PMAEs are therefore, in principle, also com-
patible with, e.g., convolutional networks. An exploration of
other architectural choices for PMAE is left for future work.

Analogous to the MAE objective in Equation (2.1), the
PMAE objective only penalizes reconstruction errors on the
part masked out by (1−m). In Equation (3.1), the model
output is projected into PC space, and the l2 norm is com-
puted between the predicted and ground truth masked-out
principal components. In Appendix A.2.4, we explore an
alternative objective for which the reconstruction error is
calculated directly in the image space. Specifically, Equa-
tion (A.1) computes the l2 norm between the decoder output
and the masked-out principal components projected back
into the image space. However, this alternative approach
results in lower downstream performance, likely due to the
stricter constraints placed on the decoder which, in this case,
also needs to predict the effect of the visible components—
akin to penalizing an MAE decoder for in-painting, rather
than predicting perfectly black patches for the visible parts.

Mask design is also a crucial aspect of our approach. In
MAEs, a fixed percentage of pixel patches is masked out.
The masking ratio is usually chosen based on a hyperpa-
rameter tuning conducted for each individual dataset (see
Figure 5, top). Instead in PMAE, we choose to systemat-
ically mask components that collectively account for a fixed
percentage of the variance of the dataset. Figure 4 illustrates
this process. After applying PCA, we randomly shuffle the
order of principal components within each batch and divide
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Figure 5. Impact of the Masking Ratio. MAE (top) and PMAE (bottom) linear probing accuracy for varying masking ratios. The
masking ratio is a sensitive and data-dependent hyper-parameter. While for MAE a clear masking guideline is hard to extract, for PMAE
we observe close-to-optimal performance across datasets for 20% of the data variance masked. (Right) Learning curves. Linear probe
accuracy for CIFAR10 classification across training epochs. PMAE outperforms MAE’s final performance after 200 epochs.

them into two disjoint sets: one explaining 100(1− r)% of
the variance, and the other, 100r%, where r is our masking
ratio. The ratio of masked variance serves as a more
interpretable and easily tunable hyperparameter compared
to the masked patch ratio used in MAEs (Figure 5, bottom),
effectively acting as a proxy for modeling task complexity.
Further details on the choice of r are provided in Section 4.

Intuition behind PMAE. Contrary to spatial masking
presented in Section 2, an appropriate function t, in Equa-
tion (3.1), can encourage information that is shared between
visible and masked-out information to contain y. More
specifically, if the latent space captures unique global infor-
mation in each dimension, masking any of these dimensions
retains information about all parts of the image. Hence,
Equation (3.1) allows us to learn more meaningful represen-
tations for a suitable choice of t. While there may be many
appropriate choices for t, we found that applying PCA and
projecting samples using the resulting principal components
is a suitable choice for the latent space. In particular, each
dimension captures specific factors of variation observed
within the dataset and is typically tied to global features as
shown in Figure 7. Masking one factor of variation thus
prevents us from completely removing all information about
variables of interest within a sample, as most principal
components will retain some information about them.

In PMAE, the masking ratio—the proportion of explained
variance masked—can also easily be interpreted, as it
directly corresponds to a well-understood quantity. In
contrast, masking pixel patches lacks a straightforward
connection to a well-defined metric. Depending on the
dataset, a given proportion of masked patches can corre-
spond to varying amounts of information content, making
the masking ratio in the spatial domain harder to interpret.

4. Experimental Setup
We now outline the setup used to validate PMAE. Our
experiments adapt the implementation proposed by He et al.
(2021). Further experimental details and information about
computational costs can be found in Appendix A.1.

Mask Design. Following MAE (He et al., 2021), we take
random image patch masking as our baseline. Based on
ablation studies from He et al. (2021), the standard practice
involves masking out 75% of image patches (denoted as
MAEstd). We also examine an oracle-based masking strat-
egy (denoted as MAEocl), where the masking ratio is tuned
to optimize linear probing downstream performance. This
setting serves as an upper bound to the downstream perfor-
mance. Additionally, we introduce a randomized masking
approach, MAErd, in which the masking ratio is indepen-
dently sampled within a range of 0.1 to 0.9 for each batch.
This strategy is exempt from any hyperparameter tuning
and offers insights into the robustness of methods under
suboptimal hyperparameters.

A similar approach is applied to PMAE, where we consider
both oracle (PMAEocl) and randomized (PMAErd) masking
strategies. In the oracle approach, we define the optimal
percentage of variance to be masked based on linear probe
downstream performance on a held-out dataset. In the ran-
domized strategy, we ensure at least 10% and at most 90% of
the data variance is masked out. This percentage is indepen-
dently sampled for each batch. Figure 9 provides examples
of the images obtained from these masking strategies.

Training & Evaluation. We train a ViT-Tiny (Touvron
et al., 2021; Dosovitskiy et al., 2021) encoder and decoder
backbones. Following He et al. (2021), we use image
flipping and random image cropping as data augmentations.
The decoder’s output is normalized (He et al., 2021) for
MAEs only as this did not result in a consistent performance
gain for PMAE. We train representations for 800 epochs
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Table 1. Linear & MLP probe and fine-tuning top-1% accuracy for
CIFAR10, TinyImageNet and MedMNIST datasets for random
masking in pixel (MAE) and principal component (PMAE) space
with the standard 75% (std), oracle (ocl) and random (rd) masking
ratios. ⋆ refers to ours.

CIFAR10 TinyIN Derma Blood Path

Linear

MAEstd 41.7 11.5 72.4 73.4 83.4

MAEocl 50.7 15.5 73.7 78.6 86.4

PMAE⋆
ocl 59.0 22.5 78.6 95.5 96.8

MAErd 41.9 7.5 72.4 83.2 85.6

PMAE⋆
rd 44.0 16.9 76.4 90.0 90.1

MLP

MAEstd 34.0 15.5 72.2 68.6 92.6

MAEocl 55.2 22.2 74.4 75.8 95.1

PMAE⋆
ocl 64.1 25.1 80.2 92.5 98.6

MAErd 38.5 11.6 66.9 70.6 95.7

PMAE⋆
rd 47.0 22.6 77.4 80.2 97.7

Fine-
tuned

MAEstd 75.7 37.5 80.4 97.8 99.7

MAEocl 80.5 42.8 79.9 98.1 99.7

PMAE⋆
ocl 84.8 44.5 82.3 98.1 99.7

MAErd 77.3 39.7 79.6 97.4 99.6

PMAE⋆
rd 80.4 46.9 82.4 98.5 99.7

and provide an overview of the evolution of performance
across training in Appendix A.2. We then evaluate learned
representations on image classification using a linear
probe and multi-layer perceptron (MLP) classifier on top
of the encoder’s output [CLS] token which is frozen.
Additionally, we also explore the fine-tuning setting in
which the pre-trained encoder and a linear probe appended
to the [CLS] token are trained simultaneously. Following
He et al. (2021), we fix the training duration at evaluation
to 100 epochs. Appendix A.2 also reports downstream
performance obtained with a k-NN classifier.

5. Results
In this section, we will outline and analyze the empirical
advantages of PMAE compared to standard MAEs in image
classification tasks. Specifically, we provide evidence
that masking within the space of principal components
facilitates the learning of discriminative features, resulting
in improved classification performance. Our findings
are supported by empirical evidence across five datasets,
including two natural image datasets of 32 × 32 and
64×64 resolutions, and three medical datasets taken from
MedMNIST (Yang et al., 2023) of 64×64 resolution (see
Figure 8 for examples of MedMNIST images).

Table 1 presents the classification accuracy using both a
linear probe and a MLP classifier. Across datasets, we
observe substantial improvements with PMAEocl in linear
probing compared to the standard MAEstd, with an average

increase of 38% (+14 percentage points). Additionally,
PMAEocl outperforms MAEocl by 20.3% (+9.5 percentage
points). We observe similar trends with the randomized
hyperparameter strategy: PMAE consistently outperforms
MAE across all datasets, yielding an average performance
increase of 29.9% (+5.4 percentage points), even when
sub-optimal hyperparameters are used. These findings also
extend to the non-linear evaluation setting, (see the middle
part of Table 1). The bottom part of Table 1 presents the
downstream performance in the fine-tuning setting. We
continue to observe a performance gain brought by PMAE
over MAE of 2.3% (+8.8 percentage points) on average.
For two of the MedMNIST datasets we observe an equal and
high (>98%) performance for both methods, showcasing
that both approaches easily complete these tasks.

These empirical findings lead to several conclusions. We
observe that the recommended masking of 75% of image
patches is largely sub-optimal across datasets. Figure 5
reports an ablation study of the masking ratios for MAE and
PMAE. Figure 5 (top) shows that, across all five datasets, a
75% masking ratio is sub-optimal. For PMAE, the masking
ratio is a more stable hyperparameter. Figure 5 (bottom)
shows that across all evaluated datasets we observe the
best or near-optimal performance for PMAE at 20% of the
variance masked. We also validate the empirical benefits
brought by PMAE. Interestingly, we notice that PMAE
without any hyperparameter tuning (PMAErd) outperforms
MAE with optimum masking ratio in all but one case (i.e.,
CIFAR10). Finally, masking 20% of the variance in PMAE
leads to substantial performance gains over the standard
approach of using MAEs with a 75% masking ratio.

Figure 5 (right) shows the downstream performance over
training epochs, where PMAE surpasses MAE as early
as 200 epochs. Figures for other datasets are provided
in Appendix A.2. Moreover, Figure 6 examines how
downstream accuracy varies with different masking ratios.
Our findings indicate that PMAE demonstrates similar or
lower standard errors across masking ratios compared to
MAE. Overall, these results highlight that the masking
strategy of PMAE better aligns image reconstruction with
image classification tasks compared to the MAE objective.

6. Understanding PMAE
In this section, we aim to provide more intuition as to
why masking components rather than image patches leads
to a more robust objective. In Section 2, we discuss the
hypothesis under which MIM operates (Kong et al., 2023)
and present an example failure case of spatial masking in
Figure 3. We highlight how masking pixels can lead to a
misalignment between the MIM objective and the learning
of meaningful representations. If all patches covering an
object are masked out, it is uncertain whether the remaining
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Figure 6. Performance across masking ratios. Average and stan-
dard error of the linear probe accuracy across masking ratios.

patches share any information with the object. On the
contrary, if the masked-out information is redundant with
the information carried by visible patches, it is likely that
the information shared does not contain the object class but
rather perceptual features (e.g., colors or textures).

Different from spatial masking, masking principal com-
ponents leads to the removal of global image features,
instead of only acting locally as in spatial masking. Figure 7
serves as an example highlighting the correspondence
between principal component and perceptual features. In
this example, the principal components with the highest
eigenvalues capture the colors within the image while
the bottom PCs highlight the edges. Early work in image
processing (Turk & Pentland, 1991) has demonstrated this
connection between an image’s dominant modes of vari-
ation and its low spatial frequency components, providing
further intuition for how information is partitioned in the
space of PCs of natural images.

By removing a subset of principal components, PMAE pre-
vents the removal of all the information characterizing an
object and prevents redundant information to remain after
masking. Instead, PMAE drops a set of unique image com-
ponents. By taking advantage of the information partitioning
in PCA, PMAE thereby mitigates MAE’s failure cases, ulti-
mately leading to increased accuracy. Although the potential
of the principal component space for MIM (Balestriero &
LeCun, 2024) or Image Denoising (Chen et al., 2024b) has
been recently explored, our work is the first to propose an
effective masking strategy that directly leverages PCA.

7. Related Work
Self-supervised learning. Self-supervised learning (SSL)
leverages auxiliary tasks to learn from unlabeled data, often
outperforming supervised methods on downstream tasks.
SSL can be divided into two categories: discriminative
and generative (Liu et al., 2021). Discriminative methods
(Chen et al., 2020a; Caron et al., 2021) focus on enforcing
invariance or equivariance between data views in the repre-
sentation space, while generative methods (He et al., 2021;
Bizeul et al., 2024) rely on data reconstruction from, often,
corrupted observations. Though generative SSL historically

lagged in performance, recent work has bridged the gap by
integrating strengths from both paradigms (Assran et al.,
2022; Dong et al., 2023; Oquab et al., 2023; Chen et al.,
2024a; Lehner et al., 2023). Interestingly, recent discrimi-
native methods employ cropping strategies to create distinct
data views (Oquab et al., 2023; Assran et al., 2023), which
is reminiscent of image masking. Balestriero & LeCun
(2024) point out the misalignment between auxiliary and
downstream tasks in reconstruction-based SSL and suggest
novel masking strategies to help realign these objectives.

Masked Image Modelling. MIM extends the successful
masked language modeling paradigm to vision tasks. Early
methods, such as Context Encoder (Pathak et al., 2016),
used a convolutional autoencoder to inpaint a central region
of the image. The rise of Vision Transformers (ViTs) (Doso-
vitskiy et al., 2021) has driven significant advancements in
MIM. BEiT (Zhou et al., 2021; Bao et al., 2022) combines a
ViT encoder with image tokenizers (Ramesh et al., 2021) to
predict discrete tokens for masked patches. SimMIM (Xie
et al., 2022) simplifies the task by pairing a ViT encoder
with a regression head to directly predict raw pixel values
for the masked regions. MAE (He et al., 2021) introduces a
more efficient encoder-decoder architecture, with a shallow
decoder. MIM’s domain-agnostic masking strategies have
also proven effective in multi-modal tasks (Baevski et al.,
2022; Bachmann et al., 2022).

Mask Design Strategies. A critical component of the
masked image modeling paradigm is the design of effective
masking strategies. Early MIM approaches have relied on
random spatial masking techniques, such as masking out
the central region of an image (Pathak et al., 2016), image
patches (He et al., 2021; Xie et al., 2022), and blocks of
patches (Bao et al., 2022). Inspired by advances in language
modeling, recent efforts have explored semantically guided
mask design. Li et al. (2021) use self-attention maps to mask
irrelevant regions, while Kakogeorgiou et al. (2022) focus
on masking semantically rich areas. Shi et al. (2022) design
masks through adversarial learning, where the resulting
masks resemble semantic maps, a concept extended by Li
et al. (2022a) through progressive semantic region masking.
Further advancing this direction, Wang et al. (2023) and
Madan et al. (2024) introduce curriculum learning-inspired
mask design methods. These methods often require addi-
tional training steps, components, or more complex objec-
tives. More closely related to our work, Chang et al. (2022);
Chen et al. (2024b) explore the use of pre-existing image
representations for asked Image Modeling and image denois-
ing. Chen et al. (2024b) introduce additive Gaussian noise
to principal components as an alternative to the traditional
Denoising Autoencoders. Chang et al. (2022) utilize masked
token modeling by leveraging the discrete latent space of a
pre-trained VQVAE to develop an image generation model.
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Figure 7. From Principal Components to Spatial Features. Overview of the spatial features associated with distinct regions of the
principal component spectrum; Images depict the features captured by the top (light blue), middle (mild blue) and bottom (dark blue) PCs.

8. Discussion
In this work, we have investigated different masking strate-
gies for Masked Image Modelling (MIM). To this end, we
have introduced the Principal Masked Autoencoder (PMAE)
as an alternative to spatial masking. PMAE is rooted in prin-
cipal component analysis (PCA; Pearson, 1901; Hotelling,
1933), which is a widely used data-driven, linear and deter-
ministic transformation. Unlike recent alternatives that re-
quire additional supervision, learnable components, or com-
plex training pipelines (Li et al., 2021; 2022a; Kakogeorgiou
et al., 2022; Li et al., 2022b), PMAE stays close to the core
principles of MIM: the combination of a randomized mask-
ing strategy and an encoder-decoder architecture. Despite
its simplicity, we demonstrate that PMAE yields substantial
performance improvements over spatial masking on image
classification tasks for CIFAR10, TinyImageNet and MedM-
NIST datasets. Further, in a PMAE, the masking ratio—
typically a sensitive and difficult-to-tune hyperparameter in
MIM—appears more robust and has a natural interpretation
as the ratio of variance explained by the masked input.

Since PCA, or its generalisation kernel PCA (Schölkopf
et al., 1997), is easily applicable to any data modality, our
proposal of masking principal components is not specific
to MIM. Instead, it can be viewed as a general strategy
that should also be applicable to other types of modalities
beyond images, as well as to other self-supervised learning
(SSL) approaches. Indeed, data masking is commonly
adopted in discriminative SSL methods. Whereas early
approaches, such as SimCLR (Chen et al., 2020a) or
MoCo (Chen et al., 2020b), relied on combinations of
image transformations (e.g., color jitter, flips, crops, etc.)
as data augmentation strategies, more recent state-of-the-art
methods like DINO (Caron et al., 2021; Oquab et al., 2023)
and I-JEPA (Assran et al., 2023) have shifted to relying
solely on image cropping, which can be considered a
type of masking. The integration of principal component
masking instead of image cropping into such SSL pipelines
constitutes a promising future direction of research.

In the present work, we have focused on PCA subspaces
as meaningful masking spaces. However, our core idea of

masking a transformed version of the data (rather than the
raw data) can be viewed as laying the groundwork for other,
more generic approaches to information masking for self-
supervised representation learning. Moving beyond PCA, a
natural extension would be to learn a suitable latent space in
which the masking is performed. This route can potentially
leverage recent theoretical insights (Kong et al., 2023)
by more explicitly enforcing that the shared information
between visible and masked-out latent components contains
high-level latent variables that are most useful for the down-
stream tasks of interest. Other off-the-shelf transformations,
such as the Fourier transform (Bracewell & Kahn, 1966),
Wavelet transform (Daubechies, 1992), Kernel principal
component analysis (Schölkopf et al., 1997), or Diffusion
Maps (Coifman & Lafon, 2006), represent alternative
candidate transformations. Future research should explore
whether the properties of these spaces provide comparable
or additional advantages over PCA. Preliminary results with
non-linear transformations, namely Kernel PCA, presented
in Appendix A.2.6, demonstrate performance gains over
PMAE, motivating further exploration. A particularly
appealing aspect of some of these methods (e.g., Fourier &
Wavelet transforms and Diffusion Maps) is the use of fixed
bases, which could eliminate the computational overhead
of PCA—whose cost scales cubically with the data
dimensionality—and improve scalability to larger datasets.

Our work demonstrates the potential of using PCA sub-
spaces to guide image representation learning. Exploring al-
ternative masking spaces with similar properties presents an
exciting avenue for future research, offering the possibility
of developing unsupervised tasks that encourage the learn-
ing of features more closely aligned with human perception.
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A. Appendix
A.1. Experimental Setup

A.1.1. DATASETS

CIFAR-10 is a widely used benchmark dataset containing 50,000 training and 10,000 validation 32×32 RGB images
depicting 10 object classes, such as airplanes, cars, and animals.

TinyImageNet is a subset of the ImageNet dataset, containing 200 classes of 64×64 RGB images. It consists of 100,000
training images and 10,000 validation images, making it a challenging benchmark for classification tasks with more
fine-grained object categories compared to CIFAR-10. Examples images are depicted in Figure 8

The MedMNIST (Yang et al., 2023) dataset is a collection of medical imaging datasets, each focusing on different types of
biomedical data. In this work, three MedMNIST datasets are used:

BloodMNIST consists of 12,000 training and 1,700 validation 64×64 RGB images across 8 classes and represents
microscopic images of blood cells, used for hematology classification tasks.

DermaMNIST contains 7,000 training and 1,000 validation 64×64 RGB images of skin samples, each part of one out
of 7 types of skin diseases.

PathMNIST comprises 90,000 training and 10,000 validation 64× 64 RGB images across 9 classes and depicts
histopathological images of colorectal cancer tissue, aiding in classification tasks relevant to pathology.

Figure 8. MedMNIST datasets. Example images from the (from
left to right) DermaMNIST, PathMNIST, and BloodMNIST datasets
used for image classification.

We apply an equivalent data augmentation strategy
to all datasets and for all learning objectives during
training; Following He et al. (2021), our augmentation
strategy consists of a random cropping followed by image
resizing using bicubic interpolation. The scale of the
random cropping is fixed to [0.2, 1.0]. We add horizontal
flipping and we normalize images using each dataset’s
training mean and standard deviation; We keep these data
augmentations during training and evaluation. We find
that the use of data augmentations during the evaluation
leads to a substantial performance drop for PMAE but we
do keep these augmentations for fair comparisons. For
all datasets and methods, we define image patches as patches of 8×8 pixels.

Figure 9. Mask Design Strategies. An overview of the different mask design strategies used in our experimental setup: spatial masking
(green) and principal component masking (blue). std refers to the standard approach of masking out 75% of image patches, ocl denotes
masking with the optimal masking ratio, rd represents a randomized strategy where the masking ratio is randomly sampled for each batch,
and target refers to the reconstruction target.
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A.1.2. MASK DESIGN

Figure 9 depicts examples of the different masking strategies explored in Section 5. For MAE with std masking, the masking
ratio is fixed to 75— 75% of patches are masked out. For MAE and PMAE with ocl masking, we tune the masking ratio to
find the optimal ratio for each dataset and method. For rd masking, the masking ratio is sampled uniformly from the range
[10,90] for each new batch of data during training.

A.1.3. MODEL ARCHITECTURE config value

hidden size 192

number of attention heads 12

intermediate size 768

norm pixel loss Y/N

patch size 8×8

Figure 10. ViT-T/8 hyperparameters.

We train a tiny Vision Transformer encoder architecture (ViT-T) with image
patch size 8×8 for all datasets (ViT-T/8). The specifics of this architecture
can be found in Figure 10. Note that while for MAE, we keep the normalized
pixel values of each masked patch as reconstruction targets (He et al., 2021),
we find it to not have a clear positive impact for PMAE and hence enforce the
reconstruction of the raw target values for PMAE.

A.1.4. TRAINING HYPERPARAMETERS

We train the ViT-T encoder-decoder architecture for 800 epochs with the hyperparameters found in Table 2. These
hyperparameters are taken from (He et al., 2021). We use the linear lr scaling rule: lr = base lr×batchsize / 256 (Goyal et al.,
2017). Note that for our oracle masking settings, we conduct ablation studies across a masking ratio range of [10, 90].

A.1.5. EVALUATION HYPERPARAMETERS

We evaluate the learned representation (i.e., [CLS] token) using a linear probe, multi-layer perceptron (MLP) classifier,
and k-Nearest Neighbors algorithm on top of the frozen representation. The training samples of each dataset are used for
training and the validation samples for testing. For linear and MLP probing experiments, we train the probes for 100 epochs
following common practices (He et al., 2021). For the k-NN algorithm, we tune the number of neighbors in the range [2, 20].
More details regarding the linear probing evaluation hyperparameters can be found in Table 3. The same hyperparameters
were used for the MLP probing. We also use the linear lr scaling rule: lr = base lr×batchsize / 256 (Goyal et al., 2017). For
the fine-tuning setup, we also follow (He et al., 2021), we fine-tune the encoder and a linear probe for 100 epochs and resort
to using the hyperparameters presented in Table 4. Note that for PMAE, we evaluate the approach on raw images and do not
perform any filtering of principal components prior to evaluation.

A.1.6. COMPUTATIONAL RESOURCES

All training runs were conducted on a single NVIDIA GeForce RTX 3090/NVIDIA GeForce RTX 4090/Quadro RTX 6000
GPUs or NVIDIA TITAN RTX each of which has 24GB of VRAM. Figure 11 reports the time taken for 800 training epochs
using a ViT-T/8 architecture on a Quadro RTX 6000 GPU for CIFAR10 and TinyImageNet with both MAE and PMAE.

config value

batch size 512

base learning rate 0.00015

optimizer AdamW [39]

betas (AdamW) β1, β2 = 0.9, 0.95

learning rate 0.0003

warmup steps 40

weight decay 0.05

Table 2. Training hyperparameters.

config value

batch size 512

base learning rate 0.1

optimizer SGD [6]

betas (SGD) 0.9

learning rate 0.2

warmup steps 10

weight decay 0

Table 3. Linear probing
hyperparameters.

config value

batch size 512

base learning rate 0.001

optimizer AdamW [39]

betas (AdamW) β1, β2 = 0.9, 0.99

learning rate 0.002

warmup steps 5

weight decay 0.5

Table 4. Fine-tuning
hyperparameters.
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Figure 11. Training time. We report the training time in minutes for 800 training epochs using a ViT-T/8 architecture. For standard MAE
we report numbers for various masking ratios.

A.2. Additional Results

A.2.1. RECONSTRUCTION OF MASKED INFORMATION

Figure 12 depicts the output of the decoder networks after 1000 training epochs for both MAE and PMAE. Interestingly, we
observe that for PMAE, the model is able to well estimate the masked out principal components.
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Figure 12. Reconstruction of masked information. Example of original images, model input and output as well as the target for MAE
(left) and PMAE (right) for CIFAR10. Training was performed for 1000 epochs with masking ratio of 75% and 10% for MAE and PMAE
respectively. Reconstructions were obtained using the validation dataset.

A.2.2. TRAINING DYNAMICS

Figure 17 displays the linear probe accuracy for varying training epoch checkpoints. Similar to Figure 5 (right) we observe
that PMAE after 200 epochs outperforms MAE after 800 epochs.

A.2.3. k-NEAREST NEIGHBOR EVALUATION

Table 5 shows the classification accuracy for CIFAR10, TinyImageNet, and MedMNIST datasets using a k-NN classifier
in place of a linear or MLP probe as presented in Section 5 and Appendix A.2.4.

A.2.4. RECONSTRUCTING IN PIXEL VS. PRINCIPAL COMPONENT SPACE

We further investigate the impact of the domain (i.e., pixel vs. pc space) in which the reconstruction error is minimized on
downstream performance. In Figure 18, we present an alternative to Figure 2 in which the training objective receives a set of
pixels in place of principal components. In Figure 18, the masked out principal components are projected back into pixel
space and the decoder’s output is kept as is. The training objective (Equation (A.1)) then minimizes the Euclidean distance
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Figure 13. TinyImageNet
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Figure 14. BloodMNIST
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Figure 15. DermaMNIST
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Figure 16. PathMNIST

Figure 17. Performance Curves. Linear probe accuracy (%) for TinyImageNet and MedMNIST datasets across training epochs. PMAE,
after 200 epochs, outperforms MAE after 800 epochs.

between the ground truth masked principal components projected back to pixel space and the decoder’s output. Instead
in Figure 2 and Equation (3.1), the training objective minimizes the Euclidean distance between the ground truth and the
predicted masked principal components. Equation (A.1) becomes a modified version of Equation (3.1):

LPMAE(x,m;θ,ϕ) =
∥∥(gθ ◦ fϕ ◦ t−1 (m⊙ t (x))

)
− t−1 ((1−m)⊙ t(x))

∥∥2
2
, (A.1)

Table 7 presents the downstream image classification performance achieved when training representations with Equa-
tion (A.1). In particular, we report results obtained using a linear and MLP probe in the standard, oracle and randomized
masking settings. Despite lower performance gains as the ones presented with Equation (3.1) in Table 1, PMAE consistently
outperforms MAE across all five datasets, demonstrating substantial improvements. In Table 1 we report an average perfor-
mance gain of 9.6 percentage points across datasets over the MAE baseline, while Table 7 reports an average performance
gain of 6.6 percentage points. These findings also support our claims that the space of principal components constitutes a
meaningful masking space for Masking Image Modelling learning paradigms.

A.2.5. MASKING RATIO ABLATION

In Appendix A.2.6, we perform an ablation across the masking ratio for representations learned with Equation (A.1). We
draw similar conclusions to the ones drawn from Appendix A.2.6: the optimal masking ratio across datasets lies between 10
and 20% of the variance masked. Above these ratios, we observe a performance drop across datasets. Appendix A.2.6 also
shows the impact of the use of data augmentations during training of the linear probe on the downstream accuracy. We see a
significant increase in performance for PMAE when dropping data augmentations for the training of the linear probe but still
resort to keeping these augmentations for the main results presented in Table 1 to ensure a fair comparison with the MAE.

A.2.6. BEYOND PCA

Our work shows evidence that PCA offers a meaningful masking space. In Section 6, we motivate our choice by observing
that principal components capture global rather than local features of an image. In this section, we go beyond PCA and
explore non-linear matrix factorization methods as a proof of concept for future research. In particular, we explore Kernel
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Table 5. Evaluation with k-NN. k-Nearest Neighbors top-1% accuracy for CIFAR10, TinyImageNet and MedMNIST for masking in
pixel (MAE) and principal component (PMAE) space with the standard 75% masking ratio (std), oracles (ocl) and randomized (rd)
masking ratios. ⋆ and ⋆⋆ refer to representations trained with Equation (3.1) and Equation (A.1) respectively.

CIFAR10 TinyImageNet DermaMNIST BloodMNIST PathMNIST

k-NN

MAEstd 38.3 10.0 71.1 65.7 92.1

MAEocl 47.6 12.5 69.9 73.6 94.6

PMAE⋆
ocl 55.3 14.2 76.6 93.1 99.6

PMAE⋆⋆
ocl 48.1 9.6 74.7 84.5 99.1

MAErd 40.3 7.6 71.6 82.7 96.0

PMAE⋆
rd 41.8 11.2 72.1 83.6 95.5

PMAE⋆⋆
rd 49.6 9.5 70.6 76.0 94.8

Figure 18. Overview of the Principal Masked Autoencoder (PMAE) with reconstruction targets in the observation space. A
Principal Masked Autoencoder (PMAE) differs from a vanilla MAE by performing the masking in the space of principal components
xPC =PCA(x) rather than in the pixel space. The masked and visible principal component m⊙xPC and (1−m)⊙xPC are then projected
back into the space of pixels and serve as the reconstruction target and input for an encoder-decoder architecture, respectively.

PCA (Schölkopf et al., 1997) with a Radial Basis Function (RBF) kernel with the kernel coefficient set to 3.10−4. In kernel
PCA, the spectral decomposition is performed not on the data itself but rather on a modified version of it: the standardized
data is mapped to a high-dimensional space via a non-linear kernel function.

Table 6. Linear and MLP probe accuracy for CIFAR10 for random
masking in pixel (MAE), in principal component space (PMAE), and
in Kernel PCA space (KMAE) with the standard 75% masking ratio
(std) and oracles (ocl). ∗ refers to ours.

MAEstd MAEocl PMAE∗
ocl KMAE∗

ocl

Linear 41.7 50.7 59.0 64.1

MLP 34.0 55.2 64.1 68.6

In Table 6, we present results on the CIFAR10 dataset
and show the image classification accuracy using a lin-
ear and MLP probe. We compare a vanilla MAE with
our PMAE and KMAE which relies on Kernel PCA for
optimal masking ratios (30% of the variance is masked
out). For KMAE, we use the setting presented in Ap-
pendix A.2.4 and use Equation (3.1) as the training objec-
tive.

The results reveal a significant performance improve-
ment when employing a non-linear image transformation.
KMAE achieves an average gain of 13.3 and 5 percentage
points compared to the standard Masked Autoencoder
(He et al., 2021) and PMAE, respectively. Although these findings are preliminary and based on a single mid-scale dataset,
they highlight the potential of non-linear transformations and further emphasize the value of spectral decomposition as a
meaningful for masked image modeling paradigms.
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Figure 19. Impact of the Masking Ratio. (top) PMAE trained with Equation (A.1) linear probing accuracy for varying masking ratios. We
observe a close-to-optimal performance across datasets for 10 to 20% of the variance masked. (bottom) PMAE trained with Equation (A.1)
linear probing accuracy without data augmentations at evaluation. We observe a significant performance improvement without data
augmentations.

Table 7. Linear & MLP probe and fine-tuning top-1% accuracy for CIFAR10, TinyImageNet and MedMNIST datasets for random
masking in pixel (MAE) and principal component (PMAE) space with reconstruction target in pixel space with the standard 75% masking
ratio (std), oracles (ocl) and randomized masking ratios (rd). Representations are learnt from Equation (A.1). ∗ refers to ours.

CIFAR10 TinyImageNet DermaMNIST BloodMNIST PathMNIST

Linear

MAEstd 41.7 11.5 72.4 73.4 83.4

MAEocl 50.7 15.5 73.7 78.6 86.4

PMAE∗
ocl 55.1 17.4 77.4 91.0 97.0

MAErd 41.9 7.5 72.4 83.2 85.6

PMAE∗
rd 56.0 15.1 74.5 85.9 87.5

MLP

MAEstd 34.0 15.5 72.2 68.6 92.6

MAEocl 55.2 22.2 74.4 75.8 95.1

PMAE∗
ocl 61.5 22.1 79.6 91.0 98.8

MAErd 38.5 11.6 66.9 70.6 95.7

PMAE∗
rd 62.2 19.5 75.3 84.4 97.0
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